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The instability of a shear layer between two parallel 
streams 

By ROBIN E. ESCH 
Pierce Hall, Harziard Uniziersity 

(Receizred 10 July 1957) 

SUMMARY 
An unbounded parallel flow, consisting of a linear shear layer 

between uniform streams, is investigated for stability. A con- 
ventional eigenvalue problem is formulated, and solved by both 
analytical and numerical methods. The region of instability in 
the plane of Reynolds number R and disturbance wave number u 
is determined, and typical growth rates in the unstable region are 
computed. 

Unstable disturbances are found at  all values of R. Results 
for uR > 100 are found to agree closely with inviscid theory 
results. An analytic method useful for uR < 1 is developed. 

The extent to which the present results can be applied to 
the laminar boundary layer between free streams is discussed. 

1. INTRODUCTION AND PREVIOUS RESULTS 

The stability of parallel flows has been studied extensively ; an account 
of such work, as well as a discussion of the general significance of the 
hydrodynamic stability problem, has been given by Lin (1955). Most of 
the work to date has dealt with flows confined by one or more solid 
boundaries. Since instability occurs only at high Reynolds numbers for 
such flows, most of this work has made use of mathematical methods 
appropriate to high values of the Reynolds number. The present investi- 
gation, however, deals with an unbounded flow, at both high and low 
Reynolds numbers, and novel methods are introduced to treat the problem. 

The flow that will be treated consists of two uniform streams of fluid 
moving parallel to one another, separated by a laminar shear layer. Such 
a model is relevant to the investigation of the boundary layer separating 
a water current from adjacent still water. It is also useful in predicting 
what happens when a shock wave diffracts into the shadow zone behind 
an obstacle; for a brief time after the passage of the shock wave, the 
velocity field will be approximately parallel, and of the form considered 
here. Information of interest in such problems is the characteristic size 
of the disturbances which may be expected to appear, and the rate at which 
they grow. The transient character of such flows (the shear layer, of 
course, grows in width) is ignored in the models considered here. Only 
infinitesimal disturbances are considered. 

F.M. T 
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Probably the first unbounded flow stability analyses were by Helmholtz 
(Lamb 1945)-hence the name ' Helmholtz instability '-and Rayleigh 
(1 945). Helmholtz considered inviscid fluids with a discontinuous profile, 
shown as profile (a) of figure 1 ; the two streams are thus considered to 
be separated by a vortex sheet of zero thickness. An infinitesimal dis- 
turbance with wave number a was found to grow at the rate eacif where 
t is time, and ci is a constant. This growth factor tcci is graphed 

Y 

Figure 1. Velocity profiles. 

in figure 2. Rayleigh, also assuming a perfect fluid, considered the piece- 
wise linear profile (b)  of figure 1. Such a profile is closer to the smooth 
profile to be expected in a real laminar boundary layer between two streams 
(similar to profile ( d )  in figure 1). The exponential growth factor found 
by Rayleigh is depicted in figure 2. 

Carrier (1954), still considering zero viscosity, obtained an analytic 
solution for the piecewise linear profile (c) of figure 1, which is a closer 
approximation to profile (d ) .  He also obtained a numerical solution for 
profile ( d )  itself. The results are shown in figure 2. 
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The first attempt to include viscosity in the analysis was made by 
Lessen (1950), who solved the boundary layer equations numerically to, 
obtain a profile similar to ( d )  of figure 1. He obtained numerically the 
first two terms of an asymptotic approximation to the solution of the 
stability problem, thereby computing values of the disturbance growth 
factor for a certain region in the plane of Reynolds number R and dis- 
turbance wave number u. Lessen’s results show that for such unbounded 
flows the physically interesting effects of viscosity occur at much lower 
Reynolds numbers than for flows confined by solid boundaries. Further, 
Lessen demonstrated that the slope of the neutral stability curve in the 
a, R plane is positive for very large R. 

WAVE NUMBER a+ 

Figure 2. Growth factors. The corresponding profiles are shown in figure 1. 

The present investigation treats the piecewise linear profile (b )  of 
figure 1 ,  extending the analysis to include the effects of viscosity. 
Although the resulting problem is only an approximate model for the 
physical problems stated earlier, the mathematical simplifications that 
result from this choice of profile allow exact solution of the eigenvalue 
problem at all values of Reynolds number. If the inviscid results may be 
taken as an indication, the present results will be quantitatively useful for 
profile ( d )  of figure 1 if the disturbance wave number cc is small, but only 
qualitatively correct for larger values of a. 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

The behaviour of small disturbances in the parallel flow of an incom- 
pressible fluid (cf. Lin 1955) are governed by the Orr-Sommerfeld equation 

(1) 
1 

iuR [w(y)-c](f”-u2f)-w”(y)f = -((f’-Zu2f”+r%4f) 

T 2  
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where w(y) is the normalized steady velocity distribution whose stability 
is to be investigated; y is distance across the stream measured in units 
equal to the half-width H of the shear layer ; and f, u, c, are defined by 
noting that the stream function associated with the disturbance velocity 
field is given by 

The Reynolds number R is (Urn H/u) ,  where Urn is the normalizing velocity, 
and v is the kinematic viscosity of the fluid. The exponential growth 
factor is ac,, where ci = 4 ( c )  ; thus the steady velocity field is stable with 
respect to the disturbance if it is found that ci < 0, and unstable if ci > 0. 

$(% y, t )  = f(y)exp[ia(x - 4 1 .  (2) 

In  the present problem the steady flow to be examined is 

W(Y) = I , -;; l, - 1  Gy,  \ (y  G 1, ( 3  ) 
Y < -1, 

-which is shown as profile (b) of figure 1. Equation (1) then becomes 
1 

iuR (y-c)(f”-u2f) = -(f’”-2a2f”+ar4f), -1 < y  < 1, (4) 

I t  is to be noted that although the w’yterm of (1) does not appear in (4) 
:and (5), its effect is not lost, but is merely concentrated on the sheets y = 1, 
y = - 1.  In  fact, if the limits 

- l + E  1 + E  
lim 1 {Equation (1)) dy and lim J’ {Equation (1)) djp 
E+O -I-€ EJO 1-E 

are considered, the w“f term is found to lead to the requirement that 

E-fO J 
The simple nature of equations (5) governing the outer regions jyl > 1 

will allow the removal of these regions from the problem. The behaviour 
of the outer-region solutions, and the discontinuities in the derivative of 
w(y), will then enter the problem in the form of boundary conditions on 
.the centre-region equation (4). Equations ( 5 )  have the particular solutions 

y <-1, (7)  

(8) 

y’l’ 1 f = e*aU, e f b l U ,  

f = efafl, 

where 

It  will be assumed, and may be verified later, that 9 ( b l )  and A’(b2) are 
never zero. Hence, with the appropriate choice of square root branches, 
b, and b,  can be defined to have real parts greater than zero. 

b, = [a2 + iaR( 1 - c)]lI2, b, = [a2 - iaR( 1 + c ) ] ~ ‘ ~ .  
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The general outer-region solutions will be linear combinations of the 
particular solutions (7). The boundary conditions at large JyI, which 
require that both components of disturbance velocity must decay, require 
the elimination of growing exponentials. Thus the outer-region solutions 
are 

f = Ale-ory+Aze-blY, y > 1, (9) 
f = A, emu +A4 ebs g, y c  -1. (10)’ 

Returning to the equation governing.f(y) in the inner region - 1 <y < 1, 
it is found that a general solution is 

.f = ~ , ~ “ ~ + ~ , ~ - “ y + ~ , f , ( Y ~ + ~ , f 4 ( y ) ,  (11), 
where pol@, e-OCv, f 3 ( y )  and f 4 ( y )  are four linearly independent solutions of (4). 
Applying the matching conditions, i.e. requiring f, f ’ ,  and f” continuous. 
andf”’ discontinuous as specified by (6), eight equations may be derived 
from (9) and (10). By eliminating the constants A,, A,, A,, A, from these 
equations, the following four equations, which constitute 
conditions on the inner-region solution (ll), may be derived : 

f”(1) + (b, +tc)f’(l) +b, M f (1) = 

f’”(1) - (b: +b, tc + G)f’(l) + (itcli- b:a- 6 ,  d ) f  (1) = 

f( - 1) - (b, + .If’( - 1) +b2 tcj( - 1) = 

f ” (  - 1) - (b:+b, tc + a2)f’( - 1) + (iali +b;a + 6, G)f( - 1) = 

The centre-region equation, (4), plus these four boundary conditions, 
constitute a conventional eigenvalue problem, where f ( y )  is the eigen- 
function and c the eigenvalue. If equations (12), considered as equations 
in the unknown coefficients B,, B2, B,, B,, are to  have non-trivial solutions, 
the determinant of the coefficients must vanish. Thus the secular 
equation (13) on p. 294 must be obeyed. 

It remains to find acceptable representations for f 3  and f4, the third and 
fourth solutions of (4), and to substitute them in (13), thereby obtaining 
a relationship among the parameters tc, c and R. Solutions of (4) may be 
derived in the form of integrals of Bessel functions of order one-third, or 
integrals of Airy integrals (cf. Watson 1944, p. 188). However, representa- 
tions of more immediate use may be obtained by taking the Fourier transform 
of equation (4). Defining 

>“- 

+(PI = I - r i P Y f ( y )  dY, 
- - m  

4 is found to obey the first-order equation 

(14)’ 

which has the solution 

+ = Z?rAexp{m P3 - i ( c +  --,)p-log[(p+itc)(p-itc)]}. icr4 (16) 
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Consequently, defining for convenience 

the desired function may be written 
s = ~ ( a R ) - l / ~ ,  

U A = - - -  
(aR)l13 ’ I 

J 

and where the path of integration is either closed or approaches infinity 
in  appropriate directions. That (17) is indeed a solution of (4) may easily 
be checked by direct substitution. 

Im (s) 

Figure 3. Paths in the s-plane. 

Closed paths of integration about the simple poles at s = iA and s = - iA 
yield the two solutions e*ay, The remaining two independent solutions are 
obtained by considering paths with limits at infinity, such as L,, L, or L3 
of figure 3 .  The corresponding integrals will be denoted 11, I ,  and 13. 
The paths must go to infinity in sectors in which the dominating factor of 
the integrand, exp( +3) ,  is exponentially small. These sectors are the 
unshaded ones in figure 3. 

3. VARIOUS METHODS OF SOLUTION AND RESULTS 

Four methods, as enumerated below, were employed to obtain 
representations €or f3 and f4 and thereby solve equation (13). 

‘(a) Large aR. Analytical method 
In  most parallel flow stability investigations, the physically interesting 

phenomena have been found to occur at large Reynolds numbers (cf. Lin 
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1955). Consequently nearly all investigations to date have made use of 
asymptotic approximations valid for large Reynolds numbers. The first 
attack on the present problem made use of such a method. 

Asymptotic approximations to the functions f 3  and f 4  were obtained 
from the integral representations (17) by the method of steepest descent 
integration (Watson 1944, p. 235ff). The following semi-convergent 
series in powers of (orR)-lI2 were thereby obtained : 

where ' 

t- ( 101 /48)e-'("i4) (35905/4608)i + O[(aR)-3/2]]. I I [' + (aR)l/Z[y - c - (ia2/aR>l3/'" - aR[y - c - (ia2/aR)I3 J 

In  the same manner, expressions were obtained for the first three derivatives 
of Il and I ,  (differentiating the asymptotic series (18) is not legitimate). 
Choosing f3 (y)  = I,, f 4 (y )  = I,, the following asymptotic expansion of the 
secular equation ( 1  3 )  was derived : 

where 
KC, + KC,(aR)-1/2 + C,(ccR)-l+ O[(aR)-3/2] = 0, (19) 

icc2 
K = ( 1  - 2 ~ ) 2  - 4 ~ 2 ~ 2  - e-4.-* , y = c +  a,  
C1 = 4( 1 - y2) ,  
C, = 2dnI4)( 1 - y)[2a( 1 + y)lj2 + (23/24)( 1 + y)-'" + 

+ 2e-@14)( 1 + y)[2a( 1 - y)lI2 + (23/24)( 1 - y)-l12], 

C3 = 1 6a2iy[4a - 1 + 2a2 - 2a2y2] + K 2i( 1 - y )  - a( 1 + y)-l+ 

4813 71 4813 
{ [:: 

Setting (ctR)-l12 = 0, ( 1 9 )  reduces to KC,  = 0, which yields 
MC = + - 2  "ite-4"- ( 1  - 2&)2]1/2 (20) 

which is the result of Rayleigh (1945) for the inviscid case and is shown 
in figure 2. 

Equating the sum of the first two terms of (19 )  to zero yields nothing 
more than the inviscid solution (20). It is therefore evident that the curves 
c = constant have a dependence on (aR)-l that is of higher order than 
one- half. 
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Three terms of the series (19) are therefore necessary to determine: the 
effect of finite Reynolds number. Equating their sum to zero yields a 
relation between a,  aR and c, which was used to plot c = constant curves 
in the a, aR plane. These curves are presented in figure 4. 

0 . j  

0 7  I 
0.2 

o a  

09 

O l l  10 20 30 5 0  100 200 300 500 1000 0 95 

aR __f 

Figure 4. Asymptotic approximations to constant c lines. 

From numerical investigations it was concluded that this asymptotic 
approach was accurate only for aR > 100 (a comparison of the ci = 0.4 
curve with numerical results is shown in figure 5 ;  the values of the 
integrals (18) were also compared with values obtained by numerical 
integration). Thus, for aR > 100, it may be concluded that there is almost 
no dependence of a(ci, R) upon R. 

It should be noted that the complex secular equation (13) constitutes 
in fact two relationships among the four parameters a,  R, c, and ci. One 
of these relationships was always found to be satisfied by taking the phase 
velocity c,  = 0. Since the disturbance phase velocity arises from the 
convection of the disturbance by the steady flow (3), c, = 0 corresponds 
to a disturbance centred at the midpoint of the shear layer (this 
interpretation loses its significance for small a,  however, since the scale of 
the disturbance then becomes much larger than the shear layer width). 
This centring of the disturbance would be expected in the case of the real 
boundary layer, figure 1 (d ) ,  because of the point of inflection at the 
midpoint (cf. Lin 1955). Furthermore, it is found in the inviscid case 



298 Robin E. Esch 

(equation (20)) that c, = 0 for all wave numbers u in the unstable range. 
Though it has of course not been proven that disturbances with c, # 0 
d o  not exist, no such roots of the secular equation (13) could be found, 
even when c, was deliberately made non-zero in the numerical investiga- 
tions to be reported below. 

A similar set of c = constant curves was obtained for negative values of ci, 
i.e. decaying disturbances. For the ci = 0 (neutral stability) case, depen- 
dence on uR became of higher order ; the only conclusion drawn was that 

( 6 )  Large uR. Numerical method 
In  order to determine the region for which the asymptotic approximation 

is accurate, to extend the solution of the eigenvalue problem to lower values 
of uR, and to trace the neutral stability curve, a numerical method for large 
aR was sought. At large uR an error-control problem arises, due to the 
rapid oscillation both off(y) and of its Fourier transform. It was decided 
to integrate the integral representations (17) numerically along the steepest 
descent paths in the complex s plane. The advantages of this method are : 
(1) No oscillation of the integrand takes place, since the imaginary part of 
the exponent is by definition constant on such a path ; the error problem 
caused by such oscillation, which increases in severity as uR increases, is 
thereby avoided. (2) The modulus of the integrand decreases most rapidly 
along such a path, allowing earliest termination of the integration. Indeed, 
because of these two features, the method works best for large aR, the very 
case for which other methods break down. The disadvantages of the method 
are : (1) the method is laborious ; not only must the integrand be evaluated 
at each step but so must the quadrature formula coefficients and the 
integration contour location. (2) The necessity of dealing with complex 
numbers is expensive in computer time and internal storage space. 
(3) Auxiliary investigations must be made to find in what direction the 
steepest descent paths go to infinity, on what sides they pass the poles, 
and whether they pass too close to a pole. 

The following complex generalization of the familiar Simpson’s rule 
was found useful to extend the integration in the complex plane : 

where 
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The values off3( f 1) andf,( k 1) found by this method were substituted 
into (13), and roots of (13) were found by successive approximation. The 
resulting points are shown on figure 5. 

( c )  Small aR. Numerical method 
A numerical method which was economical for small aR was desired, 

in order to explore that region numerically, to aid in suggesting the proper 
approach that should be taken in a small aR analytic theory, and to allow 
the investigation of other profiles w(y) .  Therefore a second numerical 
method, utilizing direct numerical solution of the differential equation (l), 
was programmed for machine solution. 

The roots of the secular equation that were computed by this method 
are plotted in figures 2 and 5. At aR = 1, the maximum growth rate was 
found to have decreased to less than one-half of its value at aR = 03. It 
was noted that, for small aR, a good empirical fit to the neutral stability 
curve is obtained by the curve 

the constant being near 0-4. 
Finally, a small number of computations were done with the error- 

function profile, curve ( d )  of figure 1. The boundary conditions which 
must be taken €or such a calculation require that the function and its first 
three derivatives, evaluated at y = -t A (where A is some sufficiently large 
number), must be continuous with the solutions (9) and (10) valid in the 
outer regions. The resulting boundary conditions are (12), with the iaR 
terms deleted, and where f is evaluated at 5 A instead of  2 1. 

Due to the lack of availability of machine time, only a single neutral 
stability point was computed for the error-function profile. It is plotted 
on figure 5, and is found to lie close to the neutral stability curve of the 
piecewise linear profile. 

(d )  Small uR. Analytical method 
Since both a and R are small in the low Reynolds number instability 

region, the choice of a parameter in which to expand (13) is not obvious. 
The proper approach is indicated by the numerical results mentioned 
earlier, which suggest that 

tends to a non-zero constant as aR --f 0 along the neutral stability curve. 
,Consequently the secular equation (13) was re-written with a and R replaced 
by the parameters aR and 8, and an expansion of the form 

a/(aR)'I2 = constant, (23 1 

a/(uR)l/' = s (24) 

m 

Dn(uR)an (25) 
n = 0 

was sought, where a is some simple fraction. The parameter ci'was set 
.equal to zero, in order to obtain the neutral stability curve, and c, = 0 
was tried, on the basis of the numerical resilts reported above. 

The differential equation (4), rewritten in terms of S and aR, is 
f' + aR( - 28' - iy)f" + (aR)'(S4 + iS2y)f G 0. (26) 
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Representations of solutions that converge rapidly for aR small at y = +_ 1 
may be obtained by expanding f in a power series in the independent 
variable y (the practicability of this approach may be seen by substituting 
x = (aR)li2y into (26), and noting the analyticity of f ( x ) ;  for, as values 
of f(y) are required at p = 1, values of f(z) are required only at the small 
points z = +_ (uR)ll2). In  this manner the following particular solutions, 
linearly independent of the solutions e’au = e*6(uR)’’*~ already used, were 
obtained : 

64(uR)2 y4- ~ i62(aR)2 y5- ___ 66(uR)3 y6- i64(uR)3 - 1 1008 y7+“‘  , 120 360 
f3=1---- 

f 4  =Y- m y 5 -  360 

The resulting representation of the secular determinant (13) is a series 
in (uR)l12. The first two terms of this series have coefficients that are 
identically zero ; they may be removed and the algebra may be simplified 
by judicious manipulation of the rows and columns of the determinant. 
Equating to zero the first term that does not vanish identically yields the 
,equation 

2iS[6+(62- i )1 /2] [6+(62+i)1’2]  +(62-i)1’2-(62+i)1/2 = 0, (28) 
which for positive real 6 has the single root 

24 1 (27) 

64(uR)2 i82(aR)2 P ( E R ) ~  
y6- ___ 2520 y7 + * - *  

This then must be the asymptotic form of the neutral stability curve as 
aR --f 0. Equation (29) is plotted in figure 5, and is seen to yield a good 
approximation to the neutral stability curve all the way up to the surprisingly 
large value aR = 1-0. 

4. CONCLUSIONS AND DISCUSSION 

The inviscid theory result (figure 2) has been found to be a good approxi- 
mation to the true situation for all aR > 100. It would seem highly probable 
that this is not an accident associated with the particular profile investigated, 
but is true also of related profiles such as that of figure 1 (d) .  Though 
perhaps not of great theoretical interest, such a result might have considerable 
practical value. 

From the results plotted on figure 5, it is seen that, as aR decreases to 
smaller values, the neutral stability curve first turns down to smaller wave 
numbers a. This is in agreement with the results of Lessen (1950) for the 
boundary layer between free streams. However, beginning at about 
aR = 100, or R = 170, the curve turns upwards. A maximum is reached 
at about aR = 15, R = 20, with a = 0.78, which is considerably higher 
than the asymptote a = 0.64 at aR = a. The curve then descends to small 
values of a as uR is reduced further. Such behaviour is not found in Lessen’s 
results, which are based on asymptotic approximations valid at large uR, 
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and, of course, on a different steady velocity profile. As shown in figure 5, 
the present asymptotic theory also fails to predict such behaviour. Conse- 
quently there is reason to suspect that the qualitative discrepancy between 
Lessen’s results and the present results is due to inadequacy of asymptotic 
approximations, rather than to difference in profile. The present asymptotic 
expansions, which are power series in are accurate only for 
(01R)li~ > 10, i.e. uR > 100, even though they were carried out to three 
terms. I t  might therefore be suspected that the asymptotic approximation 
techniques conventionally used in parallel flow stability investigations are 
likely not to be profitable in unbounded shear-flow problems. 

It is also fruitful to compare the present results with the results of the 
analysis of Lin (1955) for the stability of the flat plate boundary layer. 
The flat plate boundary layer results differ from the present results in that 
the region of instability in the 01, uR plane is smaller, does not extend down 

. to  a = 0 except at infinite Reynolds number, and does not extend below a 
minimum ‘ critical ’ Reynolds number ; however, a relative maximum of 
the neutral stability curve is found in both cases. The presence of a solid 
boundary should certainly be expected to have a stabilizing effect ; however, 
the following crude physical reasoning may perhaps further explain the 
differences. At a given Reynolds number, the amount of energy lost by 
viscous attenuation increases with wave number ; therefore neither flat 
plate nor unbounded shear layer can be unstable at high u. Small CI, on 
the other hand, corresponds to long wavelength (as seen from (2) the 
dimensional wavelength is (27~H/u), where H is the shear layer half-width). 
Suppose that a disturbance eigenmode dies out in the direction perpendicular 
to the shear layer in a distance of a wavelength (or in some distance simply 
related to the wavelength) ; then, in the flat-plate case, since the disturbance 
must be zero at the plate, at small u the main part of a disturbance would 
be situated entirely outside of the shear layer, a condition unfavourable 
for the excitation of the disturbance. However, in the absence of a solid 
boundary, the disturbance could straddle the shear layer in such a way 
that its excitation was optimized. This would explain the instability at 
small a,  and absence of a positive critical Reynolds number in the present 
results. 

The analytic method making use of ascending power series has been 
found to give accurate results for uR < 1. It should also prove useful in 
computing growth rates within the unstable region for uR < 1. 

Although for the present problem there exists no positive critical 
Reynolds number, i.e. no R > 0 below which no instability exists, in 
practical cases such a critical R will result because an experiment is limited 
in size. The bounded geometry will imply a maximum disturbance wave- 
length, and hence a minimum u > 0, and the critical R will occur when the 
neutral stability curve of figure 5 falls to that value of a. 

Finally, it may be pertinent to estimate the extent to which the present 
results apply to related profiles such as figure l(d). By the reasoning of 
Carrier (1954), it may be argued that agreement among results for related 
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profiles will be good for small a ; for the width of the shear layer will then 
be small compared to a wavelength, and the motion of the disturbance, 
which will extend in the y direction effectively the order of a wavelength, 
will penetrate deeply into the uniform flow layers. In  other words, if one 
wavelength is made the unit of distance, the shear layer becomes very thin, 
and all profiles on figure 1 look nearly the same. Judging from the inviscid 
results (figure Z), agreement should be good quantitatively for a < 0.3. 
The single neutral stability point calculated for profile ( d )  of figure 1 
corroborates this assertion (see figure 5). For a > 0.3, however, agreement 
will be only qualitative, the internal structure of the shear layer becoming 
important. 

Most of the work reported here was included in a doctoral thesis submitted 
in December, 1956, to Harvard University. The problem was suggested 
by Professor George Carrier, for whose continuing guidance the author is 
deeply grateful. The advice and help of Professor Sydney Goldstein, 
Professor Kenneth Iverson, and Mr Peter Neumann are gratefully 
acknowledged. The machine computations were made possible by the 
United States Air Force and by the cooperation and help of many members 
of the Harvard Computation Laboratory. The completion of the work 
was supported by the Office of Naval Research. 
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